LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

DEPT. NO.

Date: 05/11/2015 Time: 01:00-04:00

M.Sc.- DEGREE EXAMINATION- STATISTICS

FIRST SEMESTER- NOVEMBER 2015

ST 1821 – APPLIED REGRESSION ANALYSIS

MAX.: 100 MARKS

ANSW	WER ALL THE QUESTIONS	SECTION A	(10 X 2 = 20)
1	Write down the equations satisfied by the residence for a response variable Y with a single regressed	uals that are produced by build or X .	ing a regression model
2	State any two applications of Multiple Linear I	Regression model.	
3	Identify the linearizing transformation required down the linearized form.	I to transform the relation $Y =$	$\mathcal{V}(\beta_{0} X - \beta_{1})$ and write
4	State the variance-stabilizing transformation for	or a Poisson count variable.	
5	Write a note on the 'Model Respecification' m	ethod of handling multicollinea	rity.
6	Write down the multiple linear model equation following information	and intercept of the model coe $6 -21$ [3]	fficients based on the
_	$(X'X)^{-1} = \begin{bmatrix} -6\\ 6\\ -2 \end{bmatrix}$	$\begin{bmatrix} 7 & -4 \\ -4 & 3 \end{bmatrix}, X'Y = \begin{bmatrix} 7 \\ 7 \\ 10 \end{bmatrix}$	
7	What is a hierarchical model?		
8	Define General Linear Model (GLM).		
9	Point out any two criteria for deciding the num	ber and positions of knot in Spi	line fitting
10	What is the use of adjusted R-square?		
ANSW	WER ANY FIVE QUESTIONS	SECTION B	(5 X 8= 40)
11	Explain General linear Hypothesis and develop $\beta_2 X_2 + \beta_3 X_3 + 11$ develop the test for the linear	the F-test f(i. For a inear m r t i F a inear m	odel $\sum_{\substack{\alpha > \infty \\ \nu = \beta^{\alpha} + \dots + 1}} \sum_{x_1 = 1}^{\infty} \beta^{2}$
12	In building a model with four regressors, the s proportions were carried out to detect multicol below.	ingular values analysis and vari linearity and the part of output of	ance decomposition obtained in the analysis

Eigen	Singular	Condition	Variance decomposition proportions					
values	values	Indices	Intercept	X_1	X_2	X_3	X_4	
2.63287	1.622612			0.0568	0.0329	0.0036	0.0049	
1.03335		1.596214	0.0001	0.1473	0.0696	0.1159		
	0.778287	2.084852	0.0032	0.6325	0.0869		0.0027	
		2.300062	0.0001		0.1074	0.2196	0.2105	
0.00093	0.030496		0.9964	0.0588		0.0205	0.6645	

Fill up the missing entries and identify the variables that are entangled in collinear relationship.

13 Explain the method of detecting multicollinearity using VIF and conditional Index.

- 14 Explain Graphical method, spearman's Rank correlation method and White's general heteroscedasticity test for detecting heteroscedasticity.
- 15 Define the term interaction effect and illustrate with an example how the interaction effect between two categorical explanatory variables is captured by the coefficient of the cross product term?
- 16 In a regression model building study, electricity consumption is investigating the effect of the size of a single family type and the type of air conditioning used in the house. There are four types of air conditioning systems (no air conditioning / window units / heat bump / central air conditioning) are operated. Write down all possible regression equations for the four classes.
- 17 Explain Box Jenkins methodology of constructing an ARIMA model.
- 18 Explain the methods of model validation.

ANSWER ANY TWO QUESTIONS SECTION C
$$(2 \times 20 = 40)$$

19 The weight and systolic blood pressure of randomly selected males in the age group of 25-30 are given below:

Weight	165	167	180	155	212	175	190	210	200
BP	130	133	150	128	151	146	150	140	148

Find a regression line relating systolic blood pressure to weight. Test the hypothesis $H_0:\beta_1 = 0$. Also calculate R² and 95% confidence interval on the slope.

- 20 a) Explain how the estimates of regression parameters and the joint and individual significance of the 5 regressors are useful to detect the presence of collinearity
- 20 b) Based on a sample of size 16, a model is to be built with 4 regressors. Carry out the forward regression method to decide on the significant regressors at each iteration, given the following information.

 $SS_{total} = 1810.509, SS_{Res}(X_1) = 843.8, SS_{Res}(X_2) = 604.224, SS_{Res}(X_3) = 1292.923,$

 $SS_{Res}(X_4) = 589.24$, $SS_{Res}(X_1, X_2) = 38.6$, $SS_{Res}(X_1, X_3) = 818.04$, $SS_{Res}(X_1, X_4) = 49.8$

 $SS_{Res}(X_2, X_3) = 276.96$, $SS_{Res}(X_2, X_4) = 579.23$, $SS_{Res}(X_3, X_4) = 117.1$,

$$SS_{Res}(X_1, X_2, X_3) = 32.1, SS_{Res}(X_1, X_2, X_4) = 31.98, SS_{Res}(X_1, X_3, X_4) = 33.89,$$

$$SS_{Res}(X_2, X_3, X_4) = 49.2, \ SS_{Res}(X_1, X_2, X_3, X_4) = 31.91$$

- 21 a) Define AR(p), MA(q), ARMA(p,q) and order of integration(d)
- 21 b) Explain Spline regression with an example
- 22 a) Bring out any four specific aspects considered in fitting polynomial regression models.
- 22 b) Define the Durbin-Watson Statistics to test for first order autocorrelation in the error terms of a model. Apply it to the following series of time –ordered residuals obtained by OLS for a model with three regressors:

	4.818	-10.364	4.454	-0.727	4.091	-1.092	-6.272	3.546	8.364	-6.818	
,	The relevant DW bound are given to be $d_L = 0.34$, $d_U = 1.733$										

20

15

12

8

8

12